Analysis of speaker clustering strategies for HMM-based speech synthesis

نویسندگان

  • Rasmus Dall
  • Christophe Veaux
  • Junichi Yamagishi
  • Simon King
چکیده

This paper describes a method for speaker clustering, with the application of building average voice models for speakeradaptive HMM-based speech synthesis that are a good basis for adapting to specific target speakers. Our main hypothesis is that using perceptually similar speakers to build the average voice model will be better than use unselected speakers, even if the amount of data available from perceptually similar speakers is smaller. We measure the perceived similarities among a group of 30 female speakers in a listening test and then apply multiple linear regression to automatically predict these listener judgements of speaker similarity and thus to identify similar speakers automatically. We then compare a variety of average voice models trained on either speakers who were perceptually judged to be similar to the target speaker, or speakers selected by the multiple linear regression, or a large global set of unselected speakers. We find that the average voice model trained on perceptually similar speakers provides better performance than the global model, even though the latter is trained on more data, confirming our main hypothesis. However, the average voice model using speakers selected automatically by the multiple linear regression does not reach the same level of performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis

In this paper, we describe an HMM-based speech synthesis system in which spectrum, pitch and state duration are modeled simultaneously in a unified framework of HMM. In the system, pitch and state duration are modeled by multi-space probability distribution HMMs and multi-dimensional Gaussian distributions, respectively. The distributions for spectral parameter, pitch parameter and the state du...

متن کامل

A Context Clustering Technique for Average Voice Models

This paper describes a new context clustering technique for average voice model, which is a set of speaker independent speech synthesis units. In the technique, we first train speaker dependent models using multi-speaker speech database, and then construct a decision tree common to these speaker dependent models for context clustering. When a node of the decision tree is split, only the context...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Two-pass decision tree construction for unsupervised adaptation of HMM-based synthesis models

Hidden Markov model (HMM) -based speech synthesis systems possess several advantages over concatenative synthesis systems. One such advantage is the relative ease with which HMM-based systems are adapted to speakers not present in the training dataset. Speaker adaptation methods used in the field of HMM-based automatic speech recognition (ASR) are adopted for this task. In the case of unsupervi...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012